What are the Uses of Tantalum?

The role and uses of tantalum

It can be drawn into thin tantalum foil in the form of a fine tantalum wire. Its coefficient of thermal expansion is very small.

uses of tantalum

Tantalum has excellent chemical properties and is extremely resistant to corrosion. It can be used to make evaporating vessels, etc. It can also be used to make electrodes for electronic tubes, rectifiers, and electrolytic capacitors.

It is used medically to make thin tantalum sheets or threads to mend damaged tissue. Although tantalum is highly resistant to corrosion, its resistance to corrosion is due to the generation of a stable protective film of tantalum pentoxide on its surface.

 

Chemical properties of tantalum

Tantalum has excellent chemical properties and is extremely resistant to corrosion, not reacting to hydrochloric acid, concentrated nitric acid, or “aqua regia” under both cold and hot conditions.

However, tantalum can be corroded in hot concentrated sulfuric acid. Below 150°C, tantalum will not be corroded by concentrated sulfuric acid, but will only react above this temperature.

In 175 degrees in the concentrated sulfuric acid for 1 year, the thickness of the corrosion is 0.0004 mm, tantalum into 200 degrees in the sulfuric acid soaked for a year, the surface layer is only damaged by 0.006 mm. At 250 degrees Celsius, the corrosion rate increases to 0.116 mm per year.

At 300 degrees, the rate of corrosion is accelerated, soaking 1 year, the surface was corroded 1.368 mm. In fuming sulfuric acid corrosion rate is more serious than in concentrated sulfuric acid, soaked in the solution at 130 degrees for 1 year, the surface was corroded by the thickness of 15.6 mm.

What are the Main Uses of Tantalum?

What are the basic uses of tantalum?

1 Tantalum is used to make tantalum capacitors: tantalum carbide powder and tantalum wire are the key materials for making tantalum capacitors, and they are excellent capacitors. Niobium can also be used to make capacitors.

ta powder

2 Tantalum is used to make high-temperature resistant tantalum products: tantalum can withstand high temperatures, has good strength, and rigidity, and is a high-quality material for making heating parts, heat insulation parts, and charging vessels for vacuum high-temperature furnaces.

3 Tantalum niobium is used to make corrosion-resistant tantalum niobium products: Tantalum niobium is a high-quality material resistant to acid and alkali and liquid metal corrosion and can be used in the chemical industry to make boilers, heaters, coolers, various vessel devices, etc.

4 tantalum niobium in the aerospace industry: used in the production of aerospace aircraft, rockets, submarines, and other engine components, such as combustion chambers, combustion ducts, turbine pumps, etc. Such as WC-103 Nb-Hf-Ti high-temperature niobium-based alloy is a high-quality material for astronautics, used as rocket gas pedal nozzle, spacecraft propulsion powering device and nozzle valve, etc.

5 Tantalum used to make the lining of armor-piercing ammunition: the application is currently mainly in the United States, is a missile, such as TOW2B missile.

6 Tantalum carbide as additives to cemented carbide: cemented carbide is mainly used as tools, tools, molds, and wear-resistant corrosion-resistant structural components, adding TaC can improve its hardness, strength, melting point, etc. NbC can also be used, the performance is second to TaC.

7 Niobium is the main additive for steel. The addition of niobium micro-alloyed steel, and steel grain refinement, can improve the strength and toughness of steel, about 75% of niobium applications in the field.

8 Niobium used as superconducting materials: Nb-Ti alloy is today’s widely used *, the amount of * large superconducting materials, such as Nb47Ti, there are important applications in high-energy physics, is the large hadron collider, heavy ion collider, and other high-energy particle gas pedal * selected practical superconducting materials; Nb3Sn is second only to Nb-Ti practical superconducting materials.

9 Tantalum oxide, and niobium oxide is the raw material for making tantalum-niobium artificial crystal: Ta2O5, Nb2O5 is the raw material for making LT, LN and other crystals, LT, LN is an important piezoelectric, thermoelectric and nonlinear optical materials, in the laser and micro-acoustic surface wave and other technical fields have important uses.

10 Niobium in the atomic energy industry: Nb has a small neutron capture cross-section, high thermal conductivity, and strength, and is used in atomic energy reactors as a nuclear fuel cladding material, nuclear fuel alloy additive, and heat exchanger structural material.

11 other applications: cathode sputtering tantalum coating, high vacuum suction pump tantalum active material, Nb2O5 and Ta2O5 for optical glass modifiers and chemical catalysts, Ta, Nb in medical devices and arts and crafts applications, etc.

Why is Tantalum So Valuable?

Properties of tantalum

Tantalum has a series of excellent characteristics such as a high melting point, low vapor pressure, good cold processing performance, high chemical stability, strong resistance to liquid metal and acid and alkali corrosion, and large dielectric constant of the surface oxide film, which makes it an important modern functional material.

tantalum wire

Tantalum rapidly generates a surface oxide film that closely covers its metallic substrate in almost any environment, which is extremely thin and dense, impervious to almost all media, and self-healing once damaged. Thanks to this excellent protective film, tantalum has extremely good corrosion resistance. Except for fluorine, hydrofluoric acid, acidic solutions containing fluorine ions, fuming nitric acid, and strong alkalis, tantalum is impervious to corrosion in most media.

The main uses of tantalum

In the electronics industry, tantalum is mainly used as tantalum capacitors, which are usually applied in the form of capacitor-grade tantalum powder, tantalum wire, and tantalum foil. Tantalum capacitors are indispensable electronic components for radar, spacecraft, and missiles, and are widely used in civil applications such as mobile communication, electronic equipment, and instruments.

Tantalum powder can be made into small and large capacity capacitors because of its large specific surface area and large dielectric constant of the dielectric film, and therefore large capacity.

Electrolytic capacitors made of tantalum have the advantages of small size, lightweight, good reliability, large operating temperature range, shock resistance, and long service life. Tantalum electrolytic capacitors can be divided into solid electrolyte capacitors and liquid electrolyte capacitors according to their electrolytic degree.

Tantalum electrolytic capacitor

Capacitors can be distinguished by the form of their anodes, there are mainly two kinds of tantalum foil anodes and tantalum powder sintered anodes. Tantalum wire is used as the anode lead for these two types of capacitors. The development of the electronics industry is demanding more and more miniaturization and high reliability of tantalum capacitors. In the miniaturization of tantalum capacitors and chip types, efforts are made to increase the specific capacity of tantalum powder.

Tantalum is also used as a material for electronic tubes. Due to its high melting point, low vapor pressure, good processing properties, low coefficient of thermal expansion, and excellent gas absorption, tantalum is a good material for emitter tubes and high-power electron tube parts. Due to its high chemical stability, tantalum target is an important material for the magneto-space sputtering coating of electronic chips.

Tantalum carbide is a refractory metal, which occupies an extremely important position in cemented carbide industrial applications. Like the ceramic carbides of WC, TiC, and metallic cobalt, TaC has excellent wear resistance, toughness, hardness, and stability.

There are two types of tantalum carbide use: one is to add tantalum carbide directly to WC-Co or WC-TiC-Co alloy in small amounts, which plays a role in controlling grain growth, etc.; the other is to form a solid solution with niobium carbide or other carbides, which can improve the high-temperature hardness, high-temperature strength and oxidation resistance of the alloy, greatly improving cutting speed and extending tool life.

Ceramic carbide has excellent cutting performance, generally composed of α, γ, β three phases. α phase is tungsten carbide; β phase is the metal phase binder, metal cobalt is the most commonly used binder for ceramic carbide; γ phase is the solid solution formed by TaC, NbC, and TiC, γ phase is dissolved in tungsten carbide, its role is as a crystal generation inhibitor.

The deep processing of tantalum and its application

Tantalum has very good plasticity and is extremely easy to be processed plastic. Various industrial profiles (tantalum tube, tantalum rod, tantalum wire, tantalum strip) can be produced by using conventional processing processes (extrusion, forging, rolling, and drawing). Tantalum and tantalum alloy molten ingots have a coarse grain organization and must first be extruded or hot-forged to open the billet and break the grains before they can be further processed into the material.

Pure tantalum can be forged at room temperature to open the billet, tantalum alloy open billet temperature is generally 1100- l200 ℃. During processing, the oxidation of the tantalum alloy surface generates loose oxides and can penetrate into the alloy matrix, forming a hard permeable layer that cracks during processing. Therefore, it is important to try to protect the metal surface from oxidation during the entire machining process.

Currently, tantalum blanks are protected by salt bath heating, coating, jacketing, inert gas protection, etc. The extrusion method can produce metal tubes, bars, and profiles of different sizes; tantalum ingots can be directly forged into rolled slabs. Glass coating can be used as a lubricant; rolling of tantalum alloy plates, usually using two-roll or four-roll mills, with deformation of 10% and 15%, and total deformation of 70% and 80% when rolling 2.5mm thin plates. When rolling a 2.5mm thin plate, kerosene or palm oil is used as a lubricant.