Choose the Right Tantalum Foil for your Application

If you need a metal foil that can withstand high temperatures and has extremely strong chemical resistance to most corrosive environments then tantalum foil is already on your short list of materials.

ta metal foil

Tantalum belongs to a class of metals known as refractory metals, which are defined by their strong resistance to heat and wear. It has a melting point of 5,463 °F (2,996 °C), the fourth highest of all metals.

Like most metals, tantalum forms a thin but dense protective oxide layer (Ta2O5) when exposed to the atmosphere. This oxide layer firmly adheres to the surface of the metal, acting as a barrier that protects the underlying metal from further corrosion.

tantalum foil

Below are some examples of common applications for tantalum foils.

Included with each application are some suggestions based on how others in that industry specify the tantalum foils for such uses.  If your application is not on the list, we suggest contacting Stanford Advanced Materials’ technical sales at sales@samaterials.com.

 

Tantalum foils for Machined fasteners 

Tantalum fasteners are made of alternative materials prone to failure or that require expensive equipment shutdowns for maintenance. Tantalum foils appear in industries such as mining, energy, and pharmaceuticals as well as in metal and chemical processing.  For customers who prefer to make their own fasteners unannealed tantalum rod is most commonly requested.  Annealed tantalum foils are sometimes difficult to machine because the metal has a tendency to gum.  Unannealed tantalum foils make machining and threading easier.  As a service to our customers, Stanford Advanced Materials also offers machined fasteners to your custom sizes.

Tantalum foils for Vacuum furnace heating elements 

Because of tantalum’s oxidation resistance and high melting point, many vacuum furnace components incorporate tantalum foils. Grain-stabilized tantalum rod is designed to survive longer in high-temperature environments by reducing grain growth.  Stanford Advanced Materials can grain stabilize tantalum foils by producing the product using a powder metallurgy process which creates a very uniform and fine grain size or as an alternative the rods can be produced with very small amounts of additives such a Yttrium.  Either method prolongs or prevents the tantalum grains from growing and therefore increases machine life expectancy due to its ability to withstand high temperatures for long periods of time.

Tantalum foils for Machined parts for chemical processing equipment 

Tantalum foils have corrosion-resistant properties which make it a choice material for machined parts used in chemical processing equipment. Tantalum machined parts replace inferior materials that do not perform as well in harsh chemical environments and require extensive maintenance.  In most cases customer request tantalum 2.5% tungsten foil which has slightly more strength and corrosion resistance.  When ordering tantalum rods for such applications we suggest you order ASTM B365 R05200 for pure tantalum rods or ASTM B365 R05252 for tantalum 2.5% tungsten foils.

Tantalum foils for X-ray/radiation shielding

Due to its high density, tantalum’s radio-opaque qualities make it ideal for X-ray and shielding applications seeking to prevent radiation leakage. Tantalum foils are often manufactured into shielding which protects sensitive electronic components in aerospace structures as well as components operating in corrosive environments.  There is great variability in the tantalum foils used in applications such as this.  Because the shielding is due to tantalum’s density, which is intrinsic, just about any grade of tantalum foil will be functional.

Tantalum foils for Sputtering Targets for Gun Barrels

Tantalum foils are sometimes used as a sputtering target to coat the inside of gun barrels with tantalum as a replacement for chromium.  This makes the gun barrel manufacturing process more environmentally friendly and lets manufacturers reduce their ecological impact.  When purchasing tantalum for such an application most customers prefer tantalum foils that are fully annealed, melted in an electron beam furnace (ASTM B365 R05200), and have a 99.95% minimum purity.  Some customers have specified tantalum 2.5% tungsten or tantalum 10% tungsten foils.

 

Is Tantalum Worth More Than Gold?

Why is tantalum so valuable?

The most valuable of metal worth materials is not gold or platinum like you might expect, but a metal you’ve possibly never heard of: tantalum.

There’s a good reason for this.

tantalum

The rarest stable element- Tantalum

As you know, Tantalum is the rarest stable element in our entire solar system, with just one atom of tantalum for every 181 billion atoms of other elements.

Tantalum is a lithophile element with chalcophile affinities. Tantalum is almost exclusively found in complex oxide and hydroxide minerals, with the exception of the borate mineral behierite and the only known non-oxide, tantalum carbide TaC.

Common Ta minerals include tantalite (Fe,Mn)(Ta,Nb)2O6, formanite YTaO4, and mikrolithe. Tantalum is nearly always found in association with Nb. The most common host minerals for Ta in igneous rock types include pyroxene, amphibole, biotite, ilmenite, and sphene.

Excellent characteristics- Tantalum

Tantalum has a series of excellent characteristics such as a high melting point, low vapor pressure, good cold processing performance, high chemical stability, strong resistance to liquid metal and acid and alkali corrosion, and large dielectric constant of the surface oxide film, which makes it an important modern functional material.

Extremely good corrosion resistance – Tantalum

Tantalum rapidly generates a surface oxide film that closely covers its metallic substrate in almost any environment, which is extremely thin and dense, impervious to almost all media, and self-healing once damaged. Thanks to this excellent protective film, tantalum has extremely good corrosion resistance. Except for fluorine, hydrofluoric acid, acidic solutions containing fluorine ions, fuming nitric acid, and strong alkalis, tantalum is impervious to corrosion in most media.

Wide Applications – Tantalum

With its combination of specific physical and chemical properties, tantalum is an important product in many applications:

tantalum applications
Tantalum features a high degree of biocompatibility. For this reason, it is used in medical technology as a radiographic contrast agent and in the production of bone replacement material and implants.
• In the aerospace and energy industries, tantalum increases the corrosion resistance of alloys in turbine blades.
• Tantalum’s chemical corrosion and high-temperature resistance properties provide many benefits to the chemical process industry. For this reason, tantalum is used in the production of reactor coatings, heat exchangers, and pipelines
• Its ability to form an extremely thin oxide coating which provides a protection layer, makes tantalum the material of choice in the production of small, high-quality capacitors

In conclusion

We use our “unyielding” material – Tantalum, for example, tantalum foil, and tantalum powder, are used to produce heat exchangers for the equipment construction sector, charge carriers for furnace construction, implants for medical technology, and capacitor components for the electronics industry.

What are Common Uses of Tantalum?

Tantalum has excellent chemical properties and is extremely resistant to corrosion. It does not react to hydrochloric acid, concentrated nitric acid, or “aqua regia” under either cold or hot conditions. When tantalum is immersed in sulfuric acid at 200°C for one year, the surface layer is only damaged by 0.006 mm.

tantalum

Tungsten plate, molybdenum plate, tungsten rod, molybdenum rod, tungsten tube, molybdenum tube, tungsten crucible, molybdenum crucible experiments have proved that tantalum rod does not react to an alkaline solution, chlorine gas, bromine water, dilute sulfuric acid and many other agents under normal conditions, but only reacts to hydrofluoric acid and hot concentrated sulfuric acid. This is a relatively rare occurrence among metals.

The properties of tantalum make it suitable for a wide range of applications. In equipment for the production of various inorganic acids, tantalum can be used as a replacement for stainless steel, and its life can be increased by dozens of times compared to stainless steel. In addition, in the chemical, electronic and electrical industries, tantalum can replace the tasks that used to be undertaken by the precious metal platinum, making the costs required much lower.

In addition, tantalum is also an important element in the refining of super-strength steel, corrosion-resistant steel, and heat-resistant steel alloys, and can provide special materials necessary for the development of rockets, spacecraft, jet aircraft, and other space technologies.

Non-magnetic alloys made of tantalum and tungsten are widely used in the electrical industry, especially tantalum carbide composed of tantalum and carbon, which has great hardness, even under high conditions, and gold steel stone is not comparable.

Tungsten plate, molybdenum plate, tungsten rod, molybdenum rod, tungsten tube, molybdenum tube, tungsten crucible, molybdenum crucible made of it can cut many hard alloys at high speed; all kinds of drill bits made of it can replace the hardest alloy or gold steel stone. Therefore, tantalum is also considered to be the “vitamin” in smelting.