Tantalum Foil for Medical Uses

Introduction

Among its many forms, tantalum foil is particularly noteworthy for its flexibility, biocompatibility, corrosion resistance, and radiopacity. These properties make tantalum foil an essential material in the production of medical devices and implants, ensuring both safety and effectiveness in various healthcare settings. This article explores the reasons behind tantalum foil’s growing prominence in the medical field and its specific applications.

Unique Properties of Tantalum Foil

  1. Tantalum foil is a thin, highly ductile sheet of metal that can be easily manipulated into complex shapes without cracking or losing strength. This makes it ideal for applications where precision and flexibility are crucial, such as in the fabrication of medical implants and devices. Its ductility allows for detailed design and customization, which is often necessary in producing components tailored to individual patient needs.
  2. One of the most important properties of tantalum is its biocompatibility, meaning it does not induce harmful reactions when in contact with human tissues. This is a critical requirement for materials used in medical devices that will be implanted in the body, as the immune system can sometimes reject foreign substances. Tantalum’s low rate of human exclusion is a significant advantage, particularly when compared to other metals like nickel or chromium, which can trigger allergic reactions in some patients.
  3. Additionally, tantalum is known for its excellent corrosion resistance, particularly in the presence of bodily fluids. This ensures that tantalum implants and devices remain stable and functional over long periods without degradation. The metal’s resistance to both chemical and electrochemical corrosion, even in highly aggressive environments, guarantees that it will not leach harmful substances into the body, providing safety for patients.

Tantalum Foil in Medical Implants

One of the most critical applications of tantalum foil in healthcare is in the production of medical implants. From orthopedic to dental and cardiovascular implants, tantalum foil has become a material of choice for its durability and long-term performance.

  • In orthopedic implants, tantalum’s excellent osseointegration—the ability to bond with bone—makes it particularly useful in procedures such as joint replacements and bone reconstruction. Tantalum’s porous structure, when needed, allows bone tissue to grow into the implant, creating a stable and strong bond. This property reduces the risk of implant failure and enhances patient outcomes by promoting faster healing and improved mobility. Tantalum foil is also used in dental implants, providing a stable, corrosion-resistant foundation that is less likely to be rejected by the body compared to other metals.
  • In cardiovascular medicine, tantalum foil is often employed in the production of stents and other vascular implants. These devices are crucial for keeping blood vessels open and maintaining proper blood flow in patients with cardiovascular diseases. Due to its flexibility and biocompatibility, tantalum foil allows for the creation of stents that are both durable and easy to insert into the body, reducing complications during surgery and recovery.

Related reading: Choose the Right Tantalum Foil for your Application

Radiopacity: A Key Advantage in Medical Imaging

Tantalum’s radiopacity—its ability to show up clearly on X-rays and other imaging techniques—is another significant advantage in medical applications. This property makes tantalum foil an essential material for creating diagnostic and surgical tools that need to be easily identified in medical imaging.

  • Tantalum is commonly used in the form of marker bands for catheters and stents. These markers allow healthcare professionals to track the placement and movement of these devices within the body during surgery or other procedures, ensuring precision and safety. The clear visibility of tantalum on imaging devices ensures that surgeons can accurately position devices like stents or catheters, minimizing the risk of errors.
  • Radiopaque tantalum markers also play a key role in guiding surgeons during complex operations. For example, in spinal surgeries, tantalum markers can help guide the placement of screws or rods to ensure proper alignment and positioning, reducing the risk of complications. This precision makes tantalum a vital component in modern surgical techniques.

Biocompatibility and Low Human Exclusion

One of the biggest challenges in medical device design is finding materials that the human body will not reject or react adversely to. Tantalum’s biocompatibility makes it an ideal solution for implants and other devices that need to remain in the body for long periods. Unlike some metals that may cause allergic reactions or immune system responses, tantalum is well-tolerated by most patients, significantly reducing the risk of complications.

Tantalum’s low exclusion rate by the body is particularly important in applications where the material must interact directly with tissues and fluids, such as in bone implants, vascular stents, or dental screws. By minimizing the risk of inflammation or rejection, tantalum improves the long-term success rates of these procedures and enhances patient outcomes.

Advancing Medical Technologies with Tantalum Foil

Tantalum foil’s versatility continues to drive innovation in medical technology. Researchers are exploring new ways to use tantalum in areas such as tissue engineering, drug delivery systems, and bioactive coatings. For example, tantalum’s ability to create strong bonds with bone tissue makes it a candidate for developing advanced orthopedic implants that promote faster recovery and improved functionality.

Additionally, tantalum foil is being studied for use in creating bioactive coatings on medical devices, which could further improve their integration with human tissue and enhance healing processes. As the demand for more advanced, biocompatible materials continues to grow, tantalum foil will play a key role in the future of medical device technology.

Conclusion

Tantalum foil has found a prominent place in modern healthcare due to its flexibility, biocompatibility, and resistance to corrosion. Whether in orthopedic implants, dental devices, or cardiovascular stents, tantalum foil offers significant benefits that contribute to improved patient outcomes and the long-term success of medical procedures.

With ongoing advancements in medical technology, tantalum foil’s applications are likely to expand, further cementing its status as a crucial material in the medical field. For more tantalum products, please check Advanced Refractory Metals (ARM).

Tantalum Foil Used in Surgery

Overview

Tantalum foil, a highly durable and biocompatible material, has found significant applications in the field of surgery. Its unique properties make it an ideal choice for various medical procedures, particularly those requiring materials that can withstand harsh bodily environments and integrate well with biological tissues.

Key Properties of Tantalum Foil

  1. Biocompatibility: Tantalum is highly biocompatible, meaning it does not elicit an adverse reaction from the body’s tissues. This property is crucial for surgical implants and other medical devices that come into direct contact with body tissues.

 

  1. Corrosion Resistance: Tantalum is exceptionally resistant to corrosion, making it suitable for long-term implantation in the body where it can be exposed to bodily fluids without degrading.

 

  1. High Density and Strength: Despite its relatively low weight, tantalum has a high density and strength, providing structural support without adding unnecessary bulk.

 

  1. Imaging Compatibility: Tantalum is radiopaque, meaning it is visible under X-ray imaging, which is beneficial for monitoring the position and condition of implants post-surgery.

Common Surgical Applications

  1. Orthopedic Implants: Tantalum foil is used in orthopedic implants, including hip and knee replacements. Its biocompatibility and strength ensure that it can provide long-lasting support and integrate well with bone tissue.

 

  1. Cranial and Facial Reconstruction: In reconstructive surgery, tantalum foil can be used to repair defects in the skull or face. Its malleability allows it to be shaped precisely to fit complex anatomical structures.

 

  1. Dental Implants: Tantalum’s properties make it an excellent material for dental implants, providing a durable and biocompatible solution for tooth replacement.

 

  1. Vascular Surgery: Tantalum foil is also used in vascular surgery to create stents and grafts. Its corrosion resistance ensures that it can remain functional in the bloodstream over long periods.

Advanced Cases

For instance, tantalum foil found use in Peripheral Nerve Surgery. In the paper “Observations on the Use of Tantalum Foil in Peripheral Nerve Surgery,” published in the Journal of Neurosurgery in January 1947, N. C. Norcross and J. T. Bakody reported findings from 20 cases involving peripheral nerve suture and lysis using unannealed tantalum foil cuffs. The authors made several key observations about the use of tantalum foil in peripheral nerve surgery:

  • Protective Sheath: Tantalum foil can be used as a protective sheath to minimize fixation and scarring of the repaired nerve.
  • Annealed Foil: Annealed foil is preferable to unannealed foil for protecting the line of anastomosis because unannealed foil tends to break up.
  • Severed Nerve: Tantalum foil can be used to wrap the end of a severed nerve to prevent neuroma formation.
  • Sympathetic Trunks: Tantalum foil cuffs can be used to wrap severed sympathetic trunks during sympathectomy to prevent sympathetic fiber regeneration.

 

The versatility and effectiveness of tantalum foil are also shown in various surgical applications:

  • Spinal Surgery: Tantalum foil can be utilized in spinal surgery to create interbody fusion devices. These devices are implanted between vertebrae to provide structural support and encourage bone growth, ultimately leading to successful spinal fusion. The radiopacity of tantalum allows surgeons to monitor the progress of the fusion using X-rays.
  • Craniofacial Reconstruction: In cases of severe craniofacial trauma or congenital defects, tantalum foil can be used to reconstruct parts of the skull and face. Its ability to be molded into complex shapes ensures a good fit, promoting better healing and cosmetic outcomes.
  • Cardiovascular Surgery: Tantalum foil is employed in the construction of heart valve prosthetics and vascular stents. Its biocompatibility and resistance to corrosion are essential for the longevity and performance of these devices within the circulatory system.

Conclusion

Tantalum foil‘s unique combination of biocompatibility, corrosion resistance, high strength, and radiopacity makes it an invaluable material in various surgical applications. From orthopedic implants to craniofacial reconstruction and vascular surgery, tantalum foil provides reliable and durable solutions that enhance patient outcomes and surgical success. As medical technology advances, the use of tantalum foil in surgery is likely to expand, offering new possibilities for treatment and reconstruction. For more information, please check Advanced Refractory Metals (ARM).

 

 

Reference:

[1] NORCROSS NC, BAKODY JT. Observations on the use of tantalum foil in peripheral nerve surgery. J Neurosurg. 1947 Jan;4(1):69-71. doi: 10.3171/jns.1947.4.1.0069. PMID: 20287664.

Tantalum Ribbon for Vacuum Applications in the Lighting Industry

Introduction

Tantalum ribbon is a highly versatile material with unique properties. It is suited for vacuum applications, particularly in the lighting industry. Its ability to absorb gases such as hydrogen, oxygen, and nitrogen from the atmosphere makes it an invaluable component in maintaining the purity and efficiency of vacuum environments. Let’s have a detailed discussion.

Key Properties of Tantalum Ribbon

  1. Gas Absorption:

– Hydrogen, Oxygen, and Nitrogen Absorption: Tantalum ribbon can effectively absorb hydrogen, oxygen, and nitrogen from the atmosphere. This capability is crucial for maintaining a clean vacuum environment, preventing contamination, and ensuring optimal performance of lighting devices.

  1. High Melting Point:

– Temperature Resistance: With a melting point of approximately 3017°C (5463°F), tantalum can withstand extreme temperatures, making it suitable for high-temperature vacuum applications.

  1. Corrosion Resistance:

– Durability: Tantalum is highly resistant to corrosion by most acids and other chemicals, which enhances its longevity and reliability in harsh environments.

  1. Ductility:

– Formability: Tantalum ribbon is ductile, so it can be easily shaped and formed into various configurations to meet specific design requirements in lighting applications.

Applications in the Lighting Industry

  1. Vacuum Environments:

– Maintaining Vacuum Integrity: In lighting applications, such as in incandescent and halogen bulbs, maintaining a high-quality vacuum is essential. Tantalum ribbon helps remove residual gases, thereby preserving the vacuum integrity and preventing the degradation of the filament.

  1. Gettering:

– Gettering Process: Tantalum ribbon is often used as a getter material. Gettering involves using a material that absorbs and traps unwanted gases within the vacuum space of a lighting device. This process extends the life and enhances the performance of the lighting component.

  1. Filament Support:

– Support Structure: Tantalum ribbon can be used to support the filament in various lighting devices. Its high melting point and stability ensure that it can withstand the high temperatures generated by the filament without deforming or breaking down.

  1. Specialty Lighting:

High-Intensity Discharge (HID) Lamps: Tantalum ribbon is used in HID lamps, which are commonly employed in automotive headlights, street lighting, and industrial lighting. These lamps require materials that can operate efficiently in high-temperature and high-pressure environments.

Benefits of Using Tantalum Ribbon in Lighting Applications

  1. Enhanced Performance:

– Improved Efficiency: By absorbing gases that could otherwise interfere with the operation of lighting devices, tantalum ribbon helps maintain a stable vacuum environment, leading to improved efficiency and performance.

  1. Extended Lifespan:

– Longer Device Life: The ability of tantalum ribbon to remove detrimental gases contributes to the longevity of lighting components, reducing the need for frequent replacements and maintenance.

  1. High Reliability:

– Consistent Quality: The use of tantalum ribbon ensures consistent quality and reliability in lighting applications, making it a preferred choice for manufacturers seeking high-performance materials.

Conclusion

Tantalum ribbon is an ideal material for vacuum applications in the lighting industry due to its exceptional gas absorption capabilities, high melting point, corrosion resistance, and ductility (See Table 1). Its role in maintaining vacuum integrity, supporting filaments, and enhancing the performance and lifespan of lighting devices makes it a valuable component in the production of high-quality lighting solutions. By choosing tantalum ribbon, manufacturers can achieve greater efficiency, reliability, and longevity in their lighting products. For more information, please check Advanced Refractory Metals (ARM).

 

Table 1. Ta Ribbon for Vacuum Applications in the Lighting Industry

Category Details
Key Properties Gas Absorption Absorbs hydrogen, oxygen, and nitrogen, maintaining a clean vacuum environment.
High Melting Point Withstands extreme temperatures (approx. 3017°C / 5463°F).
Corrosion Resistance Highly resistant to acids and chemicals.
Ductility Easily shaped and formed to meet design requirements.
Applications in the Lighting Industry Vacuum Environments Removes residual gases, preserving vacuum integrity and preventing filament degradation.
Gettering Acts as a getter material to trap unwanted gases, extending component life and performance.
Filament Support Supports filaments, withstands high temperatures.
Specialty Lighting Used in HID lamps for automotive, street, and industrial lighting, efficient in high-temperature and high-pressure environments.
Benefits of Using Tantalum Ribbon Enhanced Performance Maintains a stable vacuum environment, improving efficiency and performance.
Extended Lifespan Removes harmful gases, extending component life and reducing maintenance.
High Reliability Ensures consistent quality and reliability.

ASTM Standard Specification for Tantalum and Tantalum Alloy

ASTM B364 Standard Specification for Tantalum and Tantalum Alloy Ingots

  Compositions Preparation Methods
R05200 Unalloyed tantalum Electron-beam furnace or vacuum-arc melt, or both
R05400 Unalloyed tantalum Powder-metallurgy consolidation
R05255 90 % tantalum, 10 % tungsten Electron-beam furnace or vacuum-arc melt, or both
R05252 97.5 % tantalum, 2.5 % tungsten Electron-beam furnace or vacuum-arc melt, or both
R05240 60 % tantalum, 40 % columbium Electron-beam furnace or vacuum-arc melt, or both

Notes:

All Tantalum and Tantalum Alloy Ingots must adhere to specified limits for the following chemical elements: carbon, oxygen, nitrogen, hydrogen, niobium, iron, titanium, tungsten, molybdenum, silicon, nickel, and tantalum.

ASTM B365 Standard Specification for Tantalum and Tantalum Alloy Rod and Wire

–Chemical Compositions

  Compositions Preparation Methods
R05200 Unalloyed tantalum Electron-beam furnace or vacuum-arc melt, or both
R05400 Unalloyed tantalum Powder-metallurgy consolidation
R05255 90 % tantalum, 10 % tungsten Electron-beam furnace or vacuum-arc melt, or both
R05252 97.5 % tantalum, 2.5 % tungsten Electron-beam furnace or vacuum-arc melt, or both
R05240 60 % tantalum, 40 % columbium Electron-beam furnace or vacuum-arc melt, or both

Notes:

All Tantalum and Tantalum Alloy Rods and Wires must adhere to specified limits for the following chemical elements: carbon, oxygen, nitrogen, hydrogen, niobium, iron, titanium, tungsten, molybdenum, silicon, nickel, and tantalum.

 

 

–Dimensions Tolerance

Diameter Dimensions Tolerance,±
0.010to0.020in.excl  0.254to0.508mm 0.0005in./ 0.013mm
0.020to0.030in.excl  0.508to0.762mm 0.00075in./ 0.019mm
0.030to0.060in.excl  0.762to1.524mm 0.001in./ 0.025mm
0.060to0.090in.excl  1.524to2.286mm 0.0015in./ 0.038mm
0.090to0.125in.excl  2.286to3.175mm 0.002in./ 0.051mm
0.125to0.187in.excl  3.175to4.750mm 0.003in./ 0.076mm
0.187to0.375in.excl  4.750to9.525mm 0.004in./ 0.102mm
0.375to0.500in.excl  9.525to12.70mm 0.005in./ 0.127mm
0.500to0.625in.excl  12.70to15.88mm 0.007in./ 0.178mm
0.625to0.750in.excl  15.88to19.05mm 0.008in./ 0.203mm
0.750to1.000in.excl  19.05to25.40mm 0.010in./ 0.254mm
1.000to1.500in.excl  25.40to38.10mm 0.015in./ 0.381mm
1.500to2.000in.excl  38.10to50.80mm 0.020in./ 0.508mm
2.000to2.500in. excl  50.80to63.50mm 0.030in./ 0.762mm

 

ASTM B708 Standard Specification for Tantalum and Tantalum Alloy Plate, Sheet, and Strip

–Chemical Compositions

  Compositions Preparation Methods
R05200 Unalloyed tantalum Electron-beam furnace or vacuum-arc melt, or both
R05400 Unalloyed tantalum Powder-metallurgy consolidation
R05255 90 % tantalum, 10 % tungsten Electron-beam furnace or vacuum-arc melt, or both
R05252 97.5 % tantalum, 2.5 % tungsten Electron-beam furnace or vacuum-arc melt, or both
R05240 60 % tantalum, 40 % columbium Electron-beam furnace or vacuum-arc melt, or both

Notes:

All Tantalum and Tantalum Alloy Plates, Sheets, and Strips must adhere to specified limits for the following chemical elements: carbon, oxygen, nitrogen, hydrogen, niobium, iron, titanium, tungsten, molybdenum, silicon, nickel, and tantalum.

 

 

–Dimensions Tolerance

Thickness Dimensions Tolerance
Width under 6in./ 152.4mm Width 6 to 24in./

152.4 to 609.6mm

0.0051to0.010 in./ 0.129to0.254mm 0.126to0.187 in./ 3.200to4.750mm  
0.0051to0.010 in./ 0.129to0.254mm 0.0007in./ 0.0178mm 0.001in./ 0.0254mm
0.016to0.020 in./ 0.406to0.508mm 0.0008in./ 0.0203mm 0.0015in./ 0.0381mm
0.021to0.030 in./ 0.533to0.762mm 0.0015in./ 0.0381mm 0.0025in./ 0.0635mm
0.031to0.060 in./ 0.787to1.524mm 0.0025in./ 0.0635mm 0.0035in./ 0.0889mm
0.061to0.090 in./ 1.549to2.286mm 0.004in./ 0.1016mm 0.005in./ 0.1270mm
0.091to0.125 in./ 2.311to3.175mm 0.006in./ 0.1524mm 0.007in./ 0.1778mm
0.126to0.187 in./ 3.200to4.750mm 0.010in./ 0.2540mm 0.010in./ 0.2540mm

 

 

Width Dimensions Tolerance
Width under 6in./ 152.4mm Width 6 to 24in./

152.4 to 609.6mm

0.0051to0.010 in./ 0.129to0.254mm 0.012in./ 0.305mm  
0.0051to0.010 in./ 0.129to0.254mm 0.0015in./ 0.0381mm 0.015in./ 0.381mm
0.016to0.020 in./ 0.406to0.508mm 0.0015in./ 0.0381mm 0.0015in./ 0.0381mm
0.021to0.030 in./ 0.533to0.762mm 0.020in./ 0.508mm 0.025in./ 0.635mm
0.031to0.060 in./ 0.787to1.524mm 0.025in./ 0.635mm 0.030in./ 0.762mm
0.061to0.090 in./ 1.549to2.286mm 0.025in./ 0.635mm 0.035in./ 0.889mm
0.091to0.125 in./ 2.311to3.175mm
0.126to0.187 in./ 3.200to4.750mm

 

 

Sheared Lengths Dimensions Tolerance
Length 12in./

304.8 mm and Under

Length over 12in./

304.8 mm

Plus Minus Plus Minus
0.0051to0.010 in./ 0.129to0.254mm 1⁄16 in./ 1.59mm 0 1⁄4 in./ 6.35mm 0
0.0051to0.010 in./ 0.129to0.254mm 1⁄16 in./ 1.59mm 0 1⁄4 in./ 6.35mm 0
0.016to0.020 in./ 0.406to0.508mm 1⁄16 in./ 1.59mm 0 1⁄4 in./ 6.35mm 0
0.021to0.030 in./ 0.533to0.762mm 1⁄16 in./ 1.59mm 0 1⁄4 in./ 6.35mm 0
0.031to0.060 in./ 0.787to1.524mm 1⁄16 in./ 1.59mm 0 1⁄4 in./ 6.35mm 0
0.061to0.090 in./ 1.549to2.286mm 1⁄16 in./ 1.59mm 0 1⁄4 in./ 6.35mm 0
0.091to0.125 in./ 2.311to3.175mm 1⁄16 in./ 1.59mm 0 1⁄4 in./ 6.35mm 0
0.126to0.187 in./ 3.200to4.750mm 1⁄16 in./ 1.59mm 0 1⁄4 in./ 6.35mm 0

 

ASTM B521 Standard Specification for Tantalum and Tantalum Alloy Seamless and Welded Tubes

–Chemical Compositions

  Compositions Preparation Methods
R05200 Unalloyed tantalum Vacuum melted
R05400 Unalloyed tantalum Powder-metallurgy consolidation
R05255 90 % tantalum, 10 % tungsten Vacuum melted
R05252 97.5 % tantalum, 2.5 % tungsten Vacuum melted
R05240 60 % tantalum, 40 % columbium Electron-beam furnace or vacuum-arc melt, or both

 

 

–Dimensions Tolerance

Outside Diameter Diameter Tolerance Permissible Variations

in Wall Thickness

Under1in.

25.4mm,excl

0.004in./ 0.102mm 10%
1 to 1-1/2in.

25.4to38.1mm,excl

0.005in./ 0.127mm 10%
1-1/2 to 2in.

38.1to50.8mm,excl

0.006in./ 0.152mm 10%
2 to 2-1/2in.

50.8to63.5mm,excl

0.007in./ 0.178mm 10%
2-1/2 to 3-1/2in.

63.5to88.9mm,excl

0.010in./ 0.254mm 10%

 

ASTM Standard Specification for Tantalum and Tantalum Alloy: FAQs

1. What Is An ASTM Standard Specification?

– An ASTM Standard Specification is a document that sets forth guidelines, requirements, and characteristics for various materials, products, systems, and services, ensuring their quality, consistency, and safety. These standards are essential in many industries for ensuring product reliability and safety.

2. Why Are ASTM Standards Important in Industries?

– ASTM standards are crucial for industries to maintain the quality, safety, and reliability of their products and materials. They are often required for procurement, manufacturing, and regulatory compliance. These standards are recognized globally, aiding in international standardization.

3. What Does This Specific ASTM Standard Cover?

– This ASTM standard covers specifications for tantalum and tantalum alloy products, including ingots, rods, wires, tubes, plates, sheets, and strips. It categorizes materials into types like unalloyed tantalum (R05200mm), powder-metallurgy consolidated tantalum (R05400mm), and various tantalum alloys.

4. What Are the Key Features of Tantalum Materials as per the ASTM Standard?

– The standard specifies limits for elements like carbon, oxygen, nitrogen, hydrogen, and others in tantalum materials. It outlines preparation methods such as vacuum-arc melting and electron-beam melting. The standard may also specify the alpha plus beta condition to enhance mechanical properties for specific applications.

5. How Is the Alpha Plus Beta Condition Relevant in Tantalum Alloys?

– The alpha plus beta condition, specified in some ASTM standards, is a metallurgical state that enhances the mechanical properties of metal alloys, making them suitable for specialized applications such as surgical implants.

Choose the Right Tantalum Foil for your Application

If you need a metal foil that can withstand high temperatures and has extremely strong chemical resistance to most corrosive environments then tantalum foil is already on your short list of materials.

ta metal foil

Tantalum belongs to a class of metals known as refractory metals, which are defined by their strong resistance to heat and wear. It has a melting point of 5,463 °F (2,996 °C), the fourth highest of all metals.

Like most metals, tantalum forms a thin but dense protective oxide layer (Ta2O5) when exposed to the atmosphere. This oxide layer firmly adheres to the surface of the metal, acting as a barrier that protects the underlying metal from further corrosion.

tantalum foil

Below are some examples of common applications for tantalum foils.

Included with each application are some suggestions based on how others in that industry specify the tantalum foils for such uses.  If your application is not on the list, we suggest contacting Stanford Advanced Materials’ technical sales at sales@samaterials.com.

 

Tantalum foils for Machined fasteners 

Tantalum fasteners are made of alternative materials prone to failure or that require expensive equipment shutdowns for maintenance. Tantalum foils appear in industries such as mining, energy, and pharmaceuticals as well as in metal and chemical processing.  For customers who prefer to make their own fasteners unannealed tantalum rod is most commonly requested.  Annealed tantalum foils are sometimes difficult to machine because the metal has a tendency to gum.  Unannealed tantalum foils make machining and threading easier.  As a service to our customers, Stanford Advanced Materials also offers machined fasteners to your custom sizes.

Tantalum foils for Vacuum furnace heating elements 

Because of tantalum’s oxidation resistance and high melting point, many vacuum furnace components incorporate tantalum foils. Grain-stabilized tantalum rod is designed to survive longer in high-temperature environments by reducing grain growth.  Stanford Advanced Materials can grain stabilize tantalum foils by producing the product using a powder metallurgy process which creates a very uniform and fine grain size or as an alternative the rods can be produced with very small amounts of additives such a Yttrium.  Either method prolongs or prevents the tantalum grains from growing and therefore increases machine life expectancy due to its ability to withstand high temperatures for long periods of time.

Tantalum foils for Machined parts for chemical processing equipment 

Tantalum foils have corrosion-resistant properties which make it a choice material for machined parts used in chemical processing equipment. Tantalum machined parts replace inferior materials that do not perform as well in harsh chemical environments and require extensive maintenance.  In most cases customer request tantalum 2.5% tungsten foil which has slightly more strength and corrosion resistance.  When ordering tantalum rods for such applications we suggest you order ASTM B365 R05200 for pure tantalum rods or ASTM B365 R05252 for tantalum 2.5% tungsten foils.

Tantalum foils for X-ray/radiation shielding

Due to its high density, tantalum’s radio-opaque qualities make it ideal for X-ray and shielding applications seeking to prevent radiation leakage. Tantalum foils are often manufactured into shielding which protects sensitive electronic components in aerospace structures as well as components operating in corrosive environments.  There is great variability in the tantalum foils used in applications such as this.  Because the shielding is due to tantalum’s density, which is intrinsic, just about any grade of tantalum foil will be functional.

Tantalum foils for Sputtering Targets for Gun Barrels

Tantalum foils are sometimes used as a sputtering target to coat the inside of gun barrels with tantalum as a replacement for chromium.  This makes the gun barrel manufacturing process more environmentally friendly and lets manufacturers reduce their ecological impact.  When purchasing tantalum for such an application most customers prefer tantalum foils that are fully annealed, melted in an electron beam furnace (ASTM B365 R05200), and have a 99.95% minimum purity.  Some customers have specified tantalum 2.5% tungsten or tantalum 10% tungsten foils.