Applications of Tantalum in the Electronic Industry

Tantalum and its alloy have a high melting point, corrosion resistance, excellent high-temperature strength, and are free of radioactive, etc, are widely used in the electronics industry, chemical industry, aerospace, weapon system, the medical field, etc. Applications of tantalum materials in the electronic industry mainly include tantalum capacitors, integrated circuits, electron tubes, storage devices, and passive devices.

tantalum

Tantalum Capacitors

Tantalum capacitors have strong corrosion resistance and can maintain stable electrical and physical and chemical properties under various environmental conditions. In addition, it also has a high resistance rate (7.5 x 1012 Ω cm), a large dielectric constant (27.6), and a small leakage current.

Tantalum Capacitors
Tantalum Capacitors

Tantalum has the characteristics of a valve metal, and the dense oxide film generated on its surface has unidirectional conductivity, which is suitable for capacitors. Tantalum capacitors are large in capacity and small in volume. Their capacitance is three times that of aluminum capacitors, while their volume is much smaller than that of aluminum capacitors. The tantalum capacitor has a working temperature range of 80 ~ 200 ℃, so it can meet the demand of different temperatures. In addition, tantalum capacitors also have strong stability and heat resistance, which makes them highly reliable materials in the electronics industry, as well as widely used in military and high-tech fields that need to ensure high reliability.

Integrated circuit

Tantalum has been introduced into the semiconductor industry as a barrier layer film material to prevent the diffusion of copper atoms to silicon wafers. Copper does not form a compound with tantalum and nitrogen, so tantalum and tantalum base films are used as a barrier layer to prevent the diffusion of copper. In order to prevent copper atoms from diffusing into silicon matrix, tantalum nitride, tantalum silicide, tantalum carbide, tantalum nitride silicide, tantalum nitride carbide, and other tantalum base films are used as barrier layers with good effects.

Tantalum-based films have high conductivity, high thermal stability, and excellent corrosion resistance, which are highly resistant to foreign atoms.

Tantalum
Tantalum in Semiconductor Chips

Memory device

Tantalum oxide based resistance variable memory (RRAM) has the advantages of simple structure, fast reading and writing speed, strong miniaturization and compatibility with the CMOS process. Tantalum oxide material has good thermal stability that can reach 1100 ℃. There are only two stable phases between the tantalum and oxygen, namely Ta2O5 and TaO2, which also have two very high oxygen capacity ratio under the high temperature of 1000 ℃.

Passive device

When tantalum nitride film is exposed to air, an oxide layer will naturally form on the surface to protect the film from erosion in the presence of water vapor and voltage. Tantalum nitride chip resistors do not cause catastrophic failure of the device due to poor package or protective coating integrity.

At present, the application field of capacitor grade tantalum wire is further expanded with the rapid development of the electronic market. However, the development of tantalum capacitors has been greatly restricted due to various reasons, such as the increase in production cost, the further consumption of resources, and the intensified competition among ceramic capacitors.

Please visit http://www.samaterials.com for more information.

How is Tantalum used in Modern Stomatology?

Tantalum metal (Ta) has excellent corrosion resistance, high melting point, high strength, and abrasion resistance, which has been widely used in aircraft, rockets, and other heat-resistant materials as well as industrial fields requiring high-strength parts. In addition, tantalum metal has good physical and mechanical properties and good biological compatibility, which makes it a new kind of biological material after titanium metal.

oral implant implantation

Nowadays, tantalum metal has been widely used in oral implant implantation, femoral head necrosis treatment, coronary artery stent implantation, acetabular prosthesis implantation, surgical suture line production, and other medical fields. The application of medical tantalum and porous tank in stomatology is introduced below.

Oral Implant Implantation
Oral Implant Implantation

Tantalum has been used as an implant material in the repair and treatment of patients with missing teeth. With the development of science and technology, porous tantalum has also been tried to be used in the field of implants. Due to its outstanding mechanical properties, biological properties, elastic modulus equivalent to bone tissue, and high friction coefficient, it can provide good bone bonding and initial stability for the implant, which is called a bone trabecular implant. In addition, its elastic modulus (between the cancellous bone and dense bone) is the same as that of bone tissue, which enables the implant to disperse the dental forces into the surrounding bone during long-term oral functional load, thus avoiding stress concentration.

Experiments have shown that traditional implants can absorb 30% of the load energy, while porous tantalum implants can absorb 50% to 75%. The high friction coefficient makes tantalum have good initial stability in the process of implant implantation, so as to improve the bonding rate of implant teeth, especially for the implant patients with poor bone quality. The three-dimensional structure of porous tantalum has pores, which are conducive to the attachment of bone marrow mesenchymal stem cells and osteoblasts on its surface, and the pore structure is similar to bone tissue, which provides a good scaffold for the growth of bone tissue.

Microstructure of the porous tantalum material
The microstructure of the porous tantalum material

Relevant studies have confirmed that porous tantalum granules have a good ability to induce osteogenesis, and its effect on repairing jaw defects is better than that of bio-oss bone powder commonly used in clinical practice. The porous tantalum granules and bio-oss bone powder were implanted into the defect area of the right and left mandible of beagle dogs respectively. Three months later, gross specimens, X-ray images, and hard tissue sections showed that porous tantalum granule group had a higher bone formation amount and bone tissue maturity than the control group.

Due to their good biocompatibility, tantalum and porous tantalum have important clinical value and application prospects in many fields of medicine, such as stomatology, bone surgery, cardiovascular surgery, and biomedical engineering. The application of surface modification technology will enable tantalum metal and porous tantalum to have more excellent biological properties, thus greatly improving the ability of tantalum and porous tantalum implants to combine with the surrounding bone interface.

Please visit http://www.samaterials.com for more information.

Why is Tantalum Widely Used in Electronic Industry?

Since the 1950s, TZM alloy (Mo-0.5 Ti-0.1 Zr-0.02 C) has been developed to meet the needs of the nuclear power system, aviation, and aerospace industry. It is the most widely used molybdenum alloy in the industry and the earliest refractory alloy used as a high-temperature structural material. However, the low-temperature brittleness of molybdenum alloy greatly limits its application.

tantalum metal

Tantalum metal has a lower plastic brittle transition temperature (196 ℃) and has better performance on the workability, weldability, ductility, and oxidation resistance at room temperature than that of molybdenum and tungsten in refractory metals. In addition, tantalum and its alloys with high melting point (2996 ℃), corrosion resistance, excellent high-temperature strength, and free of radioactive, etc, are widely used in the electronics industry, chemical industry, aerospace, weapon system, and the medical field, etc.

Tantalum metal
Tantalum metal

The applications of tantalum materials in the electronics industry mainly include tantalum capacitors, integrated circuits, electron tubes, memory devices, and passive devices.

Tantalum capacitor

Tantalum has the metal property of a valve, and the compact oxide film formed on its surface has unidirectional conductivity, which is suitable for making capacitors. Tantalum capacitors have a large capacity and small volume, and their capacitance is three times that of aluminum capacitors, but their volume is much smaller than that of aluminum capacitors. The working temperature of the tantalum capacitor ranges from -80 to 200 ℃, which can meet the demand of different temperatures. Besides, tantalum capacitors have strong stability and heat resistance performance and become a kind of material with high reliability in the electronics industry, which is widely used in military and high-tech fields that need to ensure high reliability.

Tantalum capacitor
Tantalum capacitor

Integrated circuit

Tantalum material is introduced into the semiconductor industry as a barrier layer thin-film material used to prevent the diffusion of copper atoms to silicon wafers. There are no compounds are formed between copper and tantalum, and copper and nitride, so tantalum and tantalum base membranes are used as barrier layers to prevent copper diffusion, and the typical thickness of the barrier layer is 0.005 ~ 0.01μm. In order to prevent the diffusion of copper atoms into the silicon matrix, tantalum nitride, tantalum silicide, tantalum carbide, and silicon nitride are used as barrier layers.

Memory device

Tantalum oxide matrix resistive memory (RRAM) has the advantages of simple structure, fast read and write speed, strong instability, and compatibility with the CMOS process. The permittivity of tantalum oxide material is very high, which is about 25. Moreover, there are only two stable phases between ta-O, Ta2O5 and TaO2, which have high oxygen capacity ratio under the high temperature of 1000 ℃.

Passive device

When tantalum nitride film is exposed to air, the surface will naturally form a layer of the oxide layer to protect the film from erosion in the presence of water vapor and voltage. The chip resistance of tantalum nitride will not cause catastrophic failure of the device due to the poor integrity of the package or protective coating.

RRAM
RRAM

When researchers discovered tantalum’s high-temperature resistance, good ductility, and corrosion resistance, the research on tantalum metal began. At present, the application field of capacitor grade tantalum wire is further expanded with the rapid development of the electronic market. However, the development of tantalum capacitors is greatly restricted due to various reasons, such as the increase in production cost, the further consumption of resources, and the intensification of the competition between ceramic and other capacitors.

In recent years, the market consumption of capacitor tantalum wire has been maintained at about 160 tons per year. With the development and use of military capacitors and the miniaturization and chip type of capacitors, the capacitor-grade tantalum wire gradually develops toward the thick and thin poles.

Please visit http://www.samaterials.com for more information.

Tantalum Processing Materials used in the Electronics Industry

With the advent of the era of big data, the storage of big data has become a matter of concern. Tantalum materials are developing at an amazing speed in today’s rapid development of the electronics industry.

tantalum target

Tantalum capacitors

Tantalum capacitors are one the indispensable electronic components for radar, aerospace aircraft, and missiles, and are widely used in civil applications, such as mobile communication, electronic equipment, instruments, and other aspects. On the contrary, the development of the electronic industry requires more and more stringent miniaturization and high reliability of tantalum capacitors.

Tantalum capacitors
Tantalum capacitors

Capacitor grade tantalum wire

Capacitor grade tantalum wire is used to make anode lead of tantalum electrolytic capacitor, and its advantages are high permittivity of the oxide film and high reliability. Compared with metallurgical tantalum wire, capacitor grade tantalum wire has high chemical purity, good surface finish, and anti-oxygen brittleness. Using tantalum powder as raw material, capacitor tantalum wire is made by powder metallurgy method after forming tantalum bar, and then through rolling, drawing, and other metal plastic processing. As a result, its surface is smooth and clean, and no grooves, burrs or other defects.

Capacitor grade tantalum wire
Capacitor grade tantalum wire

The important performance indexes of capacitor-grade tantalum wire include tensile strength, linearity, chemical composition, leakage current, etc. The diameter of the capacitor-grade tantalum is generally between Φ0.15 mm to Φ1.0 mm, and the tensile strength is between 400mpa and 1700mpa.

Tantalum target

The purity of the tantalum target is 99.95%, the surface is smooth, the grain diameter is less than 100μm, and the grain texture is mainly [111] type texture. Because of its high conductivity, high thermal stability, and barrier to foreign atoms, tantalum can be used as a barrier layer to prevent copper from diffusing into silicon. As electrode materials and surface engineering materials, tantalum target has been widely used in liquid crystal display (LCD) and heat-resistant, corrosion-resistant, and highly conductive coating industries.

Tantalum target
Tantalum target

Tantalum sputtering target material has become a key raw material in the semiconductor industry, which is irreplaceable and has a broad application prospect. The tantalum sputtering target is completed by physical vapor deposition. The specific process includes high-pressure accelerated gaseous ions bombarding the tantalum target surface, enabling the atoms on the target surface to get enough energy and break free, sputtering on the silicon chip, and finally forming the precise wiring structure in the semiconductor chip with photolithography, corrosion, and other processes. Tantalum material can be used for various thin-film applications, as diffusion barrier material applied to memory devices, such as gate electrodes of MOSFET devices and protective coating on printing head devices.

Please visit http://www.samaterials.com for more information.

How are Tantalum Capacitors used in Audio and Microphone Industry?

As tantalum capacitors have become more widely used in the market, their models and supply volumes have increased and prices have started to fall. Nowadays, aluminum electrolytic capacitors are replaced by tantalum capacitors in many industries. Of course, tantalum capacitors also have their own defects, such as not having high enough pressure, which greatly limits their use area.

capacitive microphone

Tantalum is easily oxidized in the air. The tantalum capacitors made by using its oxide film as the medium have the function of repairing wounds automatically, so they are durable and reliable. The tantalum oxide film is very thin, so the distance between two plates of tantalum capacitors is very close, and the reaction is very sensitive, so the charging and discharging speed is fast. These characteristics determine that tantalum capacitors are suitable for high-frequency, low-current, and fast reactive circuits. Therefore, tantalum capacitors are widely used in satellites and other circuits requiring fast response and high reliability.

Tantalum capacitors are often used in advanced audio circuits, mainly high audio circuits, due to their high sensitivity and fast charge-discharge. As the loss of weak current to high audio is reduced, the relatively high pitch and sound quality are improved. In short, the tantalum capacitive microphone has the following advantages.

Capacitive Microphone
Capacitive Microphone

Broad frequency response

The vibrating membrane is the main component of the microphone which induces sound and converts it into an electrical signal, and the material and mechanism design of the vibrating film is an important factor to determine the sound quality of the microphone. The vibrating membrane of a capacitive microphone can be made of extremely thin material and the induced sound pressure is converted directly into an audio signal, so the bass of frequency response can extend to the ultra-low frequency below 10Hz, and the high tone can easily reach the ultrasonic waves of dozens of KHz, showing very broad frequency response characteristics.

Hypersensitivity

Because there is no load on the diaphragm, the diaphragm can be designed in such a light and thin way that the frequency response is superior and the sensitivity is excellent. It can sense extremely weak sound waves, and output the clearest, most delicate, and most accurate original sound.

Fast transient response

In addition to the characteristics that determine the frequency response and sensitivity of the microphone, the ability of the vibrating membrane to react quickly to sound waves, namely the “instantaneous response” characteristic, is one of the most important factors that affect the microphone’s timbre. The speed of the instantaneous response of the microphone depends on the weight of the whole vibrating membrane. The lighter the vibrating membrane, the faster the reaction speed. The extremely thin vibrating film of the capacitive voice head has an extremely fast transient response, so it can show a clear, energetic, and accurate timbre.

Capacitor microphone

Resistance to fall and impact

In general, the use of microphones can be caused by accidental falls and collisions. Since the capacitive head is made up of lighter plastic parts and a sturdy light metal case, the impact force on the falling ground is small and the failure rate of damage is low.

Small size and lightweight

The capacitive microphone has the advantages of small volume, lightweight, high sensitivity, and superior frequency response due to its ultra-thin vibrating membrane, so it can be designed into subminiature microphones (commonly known as small bees and small ants) and is widely used.

Please visit http://www.samaterials.com for more information.

Tantalum Capacitors VS Ceramic Capacitors

The function of capacitors is to remove the crosstalk of various high-frequency signals generated by the chip itself to other chips so that each chip module can work normally without interference. In the high frequency electronic oscillating circuit, the SMT capacitance and crystal oscillator together form an oscillating circuit to provide the required clock frequency. Its main chemical components are nickel and chromium, and the shape is filamentous, so it is called nickel-chromium wire.

tantalum capacitors

Ceramic capacitors

Ceramic capacitors are made by high dielectric constant capacitor ceramics, which are extruded into tubes, wafers, or disks as the medium. It is divided into two types: high-frequency porcelain medium and low-frequency porcelain medium. Low-frequency ceramic dielectric vessels are limited to those occasions where they are used as by-passes or dc insulation in circuits with lower operating frequencies, or where stability and loss requirements are not high. Such capacitors are not suitable for use in pulse circuits because they are vulnerable to breakdown by impulse voltage.

Ceramic Capacitors

Tantalum Capacitors

Tantalum capacitors are characterized by long life, high-temperature resistance, high accuracy and excellent performance of the high-frequency filter. Tantalum capacitors can generally withstand high temperature and voltage and are often used for high-frequency filtering. Ceramic capacitors look a bit like patch resistors, but they are smaller in capacity and more expensive than aluminum capacitors and have relatively low voltage and current resistance.

Compared with ceramic capacitors, tantalum capacitors on SMT are labeled with capacitance and pressure resistance, and the surface color is usually yellow and black. SMT aluminum electrolytic capacitors have a larger capacity than SMT tantalum capacitors, which is more commonly seen on the display card, with a capacity between 300 VPS F and 1,500 VPS F.

Tantalum_capacitors
Tantalum Capacitors

The difference between tantalum capacitors and ceramic capacitors

They are made of different materials. As the name implies, tantalum capacitors use tantalum as the medium, while ceramic capacitors use ceramics as the medium. The capacitance of ceramic capacitors is much smaller than that of tantalum capacitors. Tantalum electrolytic capacitors can achieve a small capacitance, while the ceramic capacitor can hardly achieve the ideal performance when the capacitance is large.

Tantalum capacitors and ceramic capacitors also have different uses. Tantalum capacitors can be used as coupling, and the frequency range of such circuits as filter oscillatory bypass is large, while ceramic capacitors are mostly used in high-frequency circuits. Since tantalum capacitors are mainly made of tantalum, a very rare metal, so the capacitor grade tantalum powder is very expensive, while tantalum capacitors are sold at a high price and generally used only in high-end products that are not price-sensitive.

Multilayer ceramic capacitors are now the most widely used in almost all electronic products. In recent years, the capacity of ceramic capacitors has become larger and larger with the continuous progress of technology, and 47UF multi-layer ceramic capacitors have emerged. However, the large-capacity ceramic capacitors can only be made by a few big Japanese brands, so the price is still more expensive, which is similar to the price of tantalum capacitors.

Please visit http://www.samaterials.com for more information.

What are the Medical Applications of Tantalum?

Metal materials have excellent comprehensive mechanical properties and anti-fatigue properties and are especially suitable for bone replacement implantation of human-bearing parts. Therefore, many kinds of metal materials such as stainless steel, titanium alloy, and cobalt-base alloy have been widely used in the clinic as biomedical materials and have achieved a good therapeutic effect.

tantalum stents

However, the complex human body environment will lead to corrosion of materials and the release of toxic elements, which will lead to the reduced biocompatibility of metal materials. In addition, the elastic modulus of the metal material is too different from human bone tissue, and it is easy to produce a stress shielding effect, which is not conducive to the growth and remodeling of new bone and even leads to secondary fracture.

At present, tantalum metal attracts the attention of medical workers and materials researchers with its unique advantages and is widely used in the following aspects.

biomedical materials
Biomedical materials

Tantalum wire

Tantalum is so malleable that it can be made into even finer strands of hair. As a surgical suture, tantalum wire has the advantages of simple sterilization, less stimulation, and high tensile strength, but it also has the disadvantages of not easy knotting. Tantalum wire can be used to suture bone, tendon, and fascia, as well as reduce suture or internal dental fixation. It can also be used as a suture line for internal surgery or embedded in artificial eyeballs. Moreover, tantalum wire can even replace tendons and nerve fibers.

Tantalum sheet

Tantalum metal can be made into tantalum sheets of various shapes and sizes and implanted according to the needs of various parts of the human body, such as repairing and sealing the cracks and defects of broken skull bones and limbs fractures. An artificial ear made from tantalum sheets is attached to the head before the skin is transplanted. After a while, the new skin grew so well that it was barely visible as an artificial tantalum ear.

Tantalum stents

Tantalum wire can be used to weave the reticulocytes stent. Tantalum stent can be clearly seen under X-ray, which is very convenient for monitoring and follow-up, and there is no fracture and corrosion in the body for a long time. Tantalum has good flexibility, so the stents can better adapt to the normal pulse of arteries and can be released quickly and accurately.

Tantalum stents

Porous tantalum rod

Porous tantalum rod is a kind of honeycomb three-dimensional rod-shaped structure with characteristics of the human cancellous bone structure, with an average porosity of 430~m and a porosity of 75 ~ 80. The elastic modulus of the porous tantalum rod is about 3GPa, which is between the cancellous bone (about 1GPa) and cortical bone (about 15GPa), far lower than the commonly used titanium alloy implanted human material (about 11OGPa), thus avoiding the stress shielding effect.

Porous tantalum rod implantation is mainly used for the treatment of avascular necrosis of the femoral head in the early and middle stages. Femoral head necrosis is a kind of functional disease caused by the destruction of the blood circulation of the femoral head. It may affect the function at any age, but it usually occurs in young people. For the treatment of early femoral head necrosis, the main methods include reducing the internal pressure of the femoral head, increasing the blood supply of the femoral head, and preventing or slowing the deformation of the femoral head. The porous tantalum rod has a good supporting effect on the necrotic area of the femoral head, avoids the collapse of the femoral head, and has the potential for revascularization in the necrotic area of the femoral head.

Porous tantalum artificial joint

As an artificial joint material, the porous tantalum also has obvious advantages. The porous tantalum has a certain elasticity. When it interacts with the cortical bone with a relatively large elastic modulus, it will produce slight deformation in a certain range without fracture. This property allows the porous tantalum acetabular cover to better match the bone acetabular, improving the initial stability of the implant and reducing the possibility of acetabular fractures.

The results of the clinical experiment of total knee replacement with porous tantalum showed that the structure of porous tantalum provided sufficient support, and the patient’s bone healed well. In addition, the reduction of bone mineral salt density in patients using tantalum total knee replacement is smaller than that in patients using the cobalt-chromium alloy, but the long-term clinical effect remains to be further studied. Due to the inertia of tantalum itself and the appropriate mechanical properties and good biocompatibility of porous tantalum with the human body, porous tantalum will play a greater role in the field of artificial joints.

Porous tantalum artificial joint
Porous tantalum artificial joint

Porous tantalum filler material

Porous tantalum can also be used as filling material for all parts of the human body, such as tissue reconstruction after tumor resection, dissolving filling of the neck and lumbar spine, and vertebral arch replacement. Because of the nearly perfect fusion of porous tantalum in mechanical properties, tissue growth, and processing properties, it provides a wide design space for the molding of porous tantalum.

Tantalum coating

Tantalum metal has been used for its excellent corrosion resistance, and it is coated on the surface of some medical metal materials to prevent the release of toxic elements and improve the biocompatibility of the metal materials, as well as the visibility of materials in the human body. In addition to metallic materials, tantalum can be coated on non-metallic materials such as carbon cage surface tantalum for spinal fusion, the tantalum coating increases the strength and toughness of the carbon cage to fit the spine and better meet the requirements of the surgical process. Tantalum can also be coated on the surface of materials with some polymer composites to improve the visibility and biocompatibility of materials.

Please visit http://www.samaterials.com for more information.

How to Select a Tantalum Capacitor?

What is a tantalum capacitor?

At present, the tantalum capacitor is still a kind of charge energy storage device with a small volume but high capacity, and the amount of electric energy it can store depends on the thickness and area of the medium.

capacitors

The dielectric capacity of the tantalum capacitor’s dielectric layer can reach 120KV/mm, and its relative dielectric constant is 27 times 10-12 farad/meter. Therefore, tantalum capacitors can withstand extremely high field strength in a very thin medium layer, which is the root cause of their small size but high capacity. Tantalum capacitors are not only used in military communications, aerospace, and other fields, but also in industrial control, video equipment, communication instruments, electric vehicles, and other products.

Tantalum capacitors are mainly used for filtering, energy storage, and conversion, marking bypass, coupling, and decoupling and acting as the time constant elements. Pay attention to its performance characteristics in the application, and the correct use will help to give full play to its functions.

 capacitors

How to select appropriate tantalum capacitors?

To choose tantalum capacitors, the first problem is to choose encapsulation, voltage resistance, and capacitance. The capacity determines the size (encapsulation) of tantalum capacitors; on the contrary, what size determines what capacity and pressure tolerance can be achieved. According to the market, the most common problem is that engineers ignore this problem in the design process, and always want to achieve the desired parameters on the smallest device.

For example, the capacity of type A 10UF can be seen to have a withstand voltage of 4v6.3v10v20v, however, if you want to use 25V10UF, only the B type of tantalum capacitor can be used. In addition, since tantalum capacitors are used for derating, generally 70% of the capacitors need to be used, that is, the working voltage is 10V, which should be divided by 0.7. The capacitors can only be used with 16V withstand voltage.

How to purchase the original tantalum capacitors?

Due to the wide variety of electronic components and special uses, the current component market is full of fake products, dismantling and refurbishing products. The choice of a high-quality, long-term cooperation of the business is particularly important.

 capacitors

Currently, the world mainly has the following five brands of tantalum capacitors: AVX, KEMET, VISHAY, NEC, and NICHICON. Tantalum capacitors on the market are divided into two types: yellow tantalum and black tantalum. In simple terms, the black tantalum is produced by molding tantalum powder into shape, while the yellow tantalum is formed on the surface with polyoxide resin. Due to the production process, the internal space of black tantalum is not utilized most effectively, so the capacity of yellow tantalum is larger than that of black tantalum.

Please visit http://www.samaterials.com for more information.

Why Can the Tantalum Metal be used in Medical Operations?

Since the discovery of tantalum in 1802, the understanding and development of tantalum have had a long history. Tantalum metal is characterized by corrosion resistance, hard quality, high melting point, good thermal conductivity, good affinity with the human body, and easy processing, which is widely used in the fields of metallurgy, chemical industry, atomic energy, aerospace, electronics, and medical devices.

tantalum

Biocompatibility test of tantalum metal

Biocompatibility refers to the concept of various biological, physical, and chemical reactions resulting from interactions between materials and organisms. Generally speaking, it is the degree of compatibility between the material and the human body after implantation, that is, whether it will cause a toxic effect on human tissue.

The principle of biosafety is to eliminate the destructive effect of biological materials on human organs, such as cytotoxicity and carcinogenicity. If biomaterials are to be successful, they must at least be accepted by the host without harmful effects. Therefore, biological safety evaluation, that is, biological evaluation, should be carried out on biological materials.

porous tantalum

Insoluble tantalum salt is not absorbed by the human body through oral or local injection, and the absorption amount of soluble tantalum salt in the gastrointestinal tract is very small. Once tantalum enters the body, the main carrier responsible for the removal of tantalum is phagocytes. In the body, phagocytes can survive and have no cellular degeneration after 1h exposure to tantalum dust, with only a significant increase in glucose oxidation. Under the same conditions, silica dust can cause severe cytoplasmic degeneration and death of phagocytes, indicating that tantalum is non-cytotoxic.

Through abundant domestic and foreign materials, it is found that porous tantalum has the following advantages compared with titanium alloy.

The advantages of porous tantalum nails are one with the advantages of metal materials. After implantation, as the bone tissue grows, the fixation strength of porous tantalum nail will gradually increase. Meanwhile, as the bone tissue grows, blood circulation is also introduced into the nail body, which is conducive to preventing the occurrence of fracture nonunion and femoral head necrosis. The porous tantalum nail has excellent biocompatibility with bone. It does not need to be taken out after implantation, which can effectively prevent the risk of fracture after the removal of internal fixation. Therefore, porous tantalum nail has a good long-term effect in the treatment of femoral neck fracture and has a broad application prospect in other disciplines of orthopedics and medicine.

Application case of tantalum nail

Porous tantalum nail implantation is an ideal minimally invasive surgical treatment for the treatment of early Avascular Necrosis of Femur Head (ANFH) in adults. It has unique physical and biological advantages and is expected to achieve therapeutic effects that traditional therapies do not, as well as in line with the current concept of minimally invasive. For osteonecrosis in stage Ⅰ and Ⅱ young patients, it can relieve pain and minimize complications, at least slow down or even avoid the joint replacement, but the long-term curative effect is yet to be large sample especially central level and long-term follow-up.

Stanford Advanced Materials supplies high-quality tantalum products to meet our customers’ R&D and production needs. Please visit http://www.samaterials.com for more information.

Where Can We Find Tantalum Metal?

Tantalum metal mainly exists in tantalite ore and is symbiotic with niobium. Tantalum is of moderate hardness and ductility and can be drawn into tantalum wire or tantalum foil. Tantalum has a wide range of applications due to its characteristics, and it widely exists in tantalite, tantalum alloy, tantalum powder, tantalum capacitors, etc.

tantalum alloy

Tantalum alloy is an alloy based on tantalum adding other elements. The tantalum anode oxide film is stable and corrosion-resistant. It has excellent dielectric properties and is suitable for making the electrolytic capacitor. Tantalum is highly resistant to chemical corrosion. Except for hydrogen fluoride, sulfur trioxide, hydrofluoric acid, hot concentrated sulfuric acid and alkali, tantalum can resist the corrosion of all organic and inorganic acids. Therefore, it can be used as corrosion resistant materials for chemical industry and medicine.

Tantalum alloy

As tantalum is similar to some rare elements such as uranium, thorium, rare earth, titanium, zirconium, tungsten, and common elements tin, calcium, iron, and manganese in crystalline chemistry, it is easy to have equivalence and heteromorphism.

The compact oxide film formed on the surface of metallic tantalum has the properties of valve metal of unidirectional conduction. The anodic film made of tantalum powder has chemical stability (especially in acidic electrolyte stability), high resistivity (7.5 x 1010 Ω, cm), dielectric constant (27.6) and small leakage current. Tantalum is not only the raw material for the production of pure metal tantalum but also used in the electronics industry. Lithium tantalate monocrystals and special optical glass with high refraction and low dispersion can be used as a catalyst in the chemical industry.

Tantalum oxide is a white powder insoluble in water and acids, but soluble in molten potassium bisulfate and hydrofluoric acid. The minerals containing tantalum and niobium are mainly iron tantalum and calcined greenstone. The ones containing more tantalum are called tantalite, while the ones containing more niobium are called niobite.

tantalum capacitor

The design of tantalum capacitors requires that the product performance parameters of tantalum capacitors can meet the circuit signal characteristics. However, it is often impossible to guarantee that the above two tasks are done well. Therefore, it is inevitable that failures of one kind or another will occur in the process of use. The solid tantalum capacitors were first developed in 1956 by Bell Laboratories in the United States. Tantalum capacitors can easily obtain large capacity, and there are few competitors in power filter, ac bypass, and other applications.

Stanford Advanced Materials supplies high-quality tantalum and related products to meet our customers’ R&D and production needs. Please visit http://www.samaterials.com for more information.