Capacitor Grade Tantalum Wire: Applications and Importance

Capacitor grade tantalum wire is specifically designed to meet the stringent requirements of the electronics industry, offering superior electrical conductivity, corrosion resistance, and chemical stability. This article delves into the properties, manufacturing process, and applications of capacitor grade tantalum wire, highlighting its importance in modern technology.

Properties of Capacitor Grade Tantalum Wire

Tantalum, a rare and highly corrosion-resistant metal, exhibits a unique set of properties that make it ideal for use in electronic components such as capacitors. The key properties of capacitor grade tantalum wire include:

  1. High Purity:

Capacitor grade tantalum wire is manufactured with extremely high purity levels (often exceeding 99.95%) to ensure optimal performance in electronic applications.

  1. Excellent Corrosion Resistance:

Tantalum’s ability to resist oxidation and corrosion, even in highly reactive environments, ensures the longevity and reliability of capacitors.

  1. Superior Conductivity:

The wire offers excellent electrical conductivity, allowing it to serve as an effective lead or anode connection in capacitors.

  1. Thermal Stability:

Tantalum maintains its structural integrity and performance across a wide range of temperatures, making it ideal for use in demanding environments.

  1. Biocompatibility:

In addition to its electrical applications, tantalum’s biocompatibility has made it suitable for medical-grade capacitors used in implantable devices.

Manufacturing Process of Capacitor Grade Tantalum Wire

The production of capacitor grade tantalum wire involves a precise and controlled process to ensure high purity and optimal performance. The main steps include:

  1. Raw Material Processing:

Tantalum ore, primarily extracted as tantalum pentoxide (Ta₂O₅), is refined through a series of chemical processes to remove impurities. The refined tantalum is then converted into a powder or ingot form.

  1. Melting and Casting:

The refined tantalum is melted in a vacuum or inert gas environment to create high-purity ingots. These ingots form the basis for wire production.

Electron beam melting or vacuum arc remelting techniques are commonly used to achieve the necessary purity levels.

  1. Wire Drawing:

The tantalum ingot is forged into rods and then drawn into wires of the desired diameter through successive stages of extrusion and drawing.

Each step is carefully controlled to ensure uniformity and precision.

  1. Annealing:

The wire is annealed at high temperatures to relieve internal stresses and improve its ductility, which is crucial for its use in capacitor manufacturing.

  1. Surface Treatment:

To achieve the desired surface finish and prevent contamination, the wire undergoes cleaning and polishing processes.

Applications of Capacitor Grade Tantalum Wire

1. Tantalum Capacitors:

The primary application of capacitor grade tantalum wire is in the manufacturing of tantalum capacitors. These capacitors are widely used in electronic devices due to their compact size, high capacitance, and reliability. The wire serves as a lead or anode connection, providing a crucial pathway for electrical conductivity.

  • Consumer Electronics: Tantalum capacitors are integral to smartphones, laptops, gaming consoles, and wearable devices.
  • Automotive Industry: Used in automotive electronic control units (ECUs), sensors, and infotainment systems.
  • Telecommunications: Essential for high-frequency applications in base stations, network routers, and satellite communications.

2. Medical Devices:

Tantalum wire is used in medical-grade capacitors for implantable devices like pacemakers, defibrillators, and hearing aids due to its biocompatibility and reliability.

3. Aerospace and Defense:

Capacitor grade tantalum wire is employed in avionics, missile systems, and space equipment, where high reliability and resistance to extreme conditions are critical.

4. Industrial Applications:

In industrial equipment, tantalum capacitors with high-grade wires are used in power supplies, motor drives, and energy storage systems.

Advantages of Tantalum Wire in Capacitors

The use of tantalum wire in capacitors offers several advantages over other materials, including:

  • High Capacitance-to-Volume Ratio:

Tantalum capacitors, enabled by tantalum wire, can store more charge per unit volume compared to other types, making them ideal for compact devices.

  • Long Lifespan:

The corrosion resistance and thermal stability of tantalum wire contribute to the extended operational life of capacitors.

  • Stable Performance:

Tantalum capacitors exhibit stable performance across a wide range of temperatures and frequencies, thanks to the properties of tantalum wire.

  • Reliability in Extreme Environments:

The wire’s resistance to oxidation and chemical attack makes it suitable for aerospace and military applications.

Conclusion

Capacitor grade tantalum wire is a cornerstone material in the electronics industry, enabling the production of reliable, compact, and efficient tantalum capacitors. Its exceptional properties, including high purity, corrosion resistance, and thermal stability, make it indispensable in consumer electronics, medical devices, aerospace, and industrial applications. For more information, please visit Advanced Refractory Metals (ARM).

Overview of Tantalum’s Main Products & Applications

Tantalum has a series of excellent properties such as high melting point, low vapor pressure, good cold workability, high chemical stability, strong resistance to liquid metal corrosion, and large dielectric constant of the surface oxide film. Therefore, tantalum is mainly used in high-tech fields such as electronics, metallurgy, steel, chemicals, hard alloys, atomic energy, superconducting technology, automotive electronics, aerospace, medical health, and scientific research.

tantalum capacitors

50% -70% of tantalum in the world is used to make tantalum capacitors in the form of capacitor-grade tantalum powder and tantalum wire. The surface of tantalum can form a dense and stable amorphous oxide film with high dielectric strength, which is easy to accurately and conveniently control the capacitor’s anodizing process.

Tantalum powder sintered blocks can obtain a large surface area in a small volume, so tantalum capacitors have high capacitance, low leakage current, low equivalent series resistance, and good high and low-temperature characteristics, long service life, and excellent comprehensive performance. Tantalum capacitors are widely used in industrial and scientific and technological sectors such as communications (exchanges, mobile phones, pagers, fax machines, etc.), computers, automobiles, home, and office appliances, instrumentation, aerospace, defense, and military.

Tantalum is an extremely versatile functional material. The following are the main products and applications of tantalum.

Tantalum carbide

Application: Cutting tools

Properties: Tantalum carbide is easy to form at high temperatures to avoid texture

Tantalum lithium

Application areas: surface acoustic waves, mobile phone filters, hi-fi and TV

Properties: strengthen the electronic signal wave, output more clear audio and video

Tantalum oxide

Applications: Lenses for telescopes, cameras and mobile phones, X-ray films, inkjet printers

Properties: Adjust the refractive index of optical glass, reduce X-ray exposure, improve image quality, and improve the wear resistance of integrated capacitors in integrated circuits

Tantalum powder

Applications: Tantalum capacitors in electronic circuits, medical devices, automotive parts such as ABS, airbag activation, engine management modules, GPS, portable electronics such as laptops, mobile phones, other devices such as flat-screen TVs, battery chargers, power diodes, Oil well probe, mobile phone signal shielding mast

Properties: high reliability, low failure rate, strong electronic storage capacity, it can withstand low temperatures such as -55 ℃ and high temperatures + 220 ℃, as well as severe vibration forces

Tantalum plate

Applications: Chemical reaction equipment such as coatings, valves, internal heat exchangers, cathodic protection systems for steel structures, water tanks, corrosion-resistant fasteners such as screws, nuts, and bolts

Properties: excellent corrosion resistance

Tantalum wire and tantalum rod

Applications: Tantalum wire and tantalum rod are used to repair hip joints, skull plates, bones after receiving tumor damage, suture clips, stent blood vessels

Properties: strong biological compatibility

Tantalum-artificial-joint

Tantalum wire and tantalum rod

Application: High-temperature furnace parts

Properties: The melting point is as high as 2996 ℃ (but vacuum protection is required)

Tantalum Disc

Application: sputtering target

Properties: a thin layer of tantalum, tantalum nitride coating oxide or semiconductor prevents copper migration

Tantalum ingot

Application: Superalloys such as jet engine vortex discs (such as blades)

Properties: The alloy composition contains 3~11% tantalum provides corrosion-resistant hot gas and allows higher operating temperature

Tantalum ingot

Application: Computer hardware driver CD

Properties: An alloy containing 6% of tantalum has shape memory properties

Stanford Advanced Materials supplies high-quality tantalum products to meet our customers’ R&D and production needs. Please visit https://www.samaterials.com/ for more information.

A Brief History of Tantalum

In 1801, Charles Hatchett, a British chemist, analyzed a collection of minerals preserved in British museums and discovered a new element, Columbium (later renamed Columbium), in honor of Colombia, where the ore was made. In 1802, Anders Gustav Ekberg, a Swedish chemist, crystallized tantalum from niobium in Scandinavia.

tantalum

Because tantalum and niobium have very similar properties and specific gravity, many scientists at the time mistakenly believed that the two elements were the same substance. In 1844, German chemist Rosser used chemical methods to prove that tantalum and niobium are two elements.

In 1903, pure tantalum was produced for the first time. Tantalum capacitors manufactured with tantalum, with high capacity, small size, and high reliability, are still irreplaceable components in the electronics industry.

With the continuous miniaturization and portability of global electronic products since 1990, tantalum capacitors have been widely used. Today, tantalum capacitors are shipped about 100 billion times a year.

There are three major Tantalum companies operating in the world today: the US Cabot group, the German HCST group, and China Swing Orient Tantalum Industry Co., Ltd. These three companies produce more than 80 percent of the world’s tantalum products.

Tantalum used in electronics accounts for 60% of total production. But tantalum is not just used as a capacitor. Nickel-tantalum alloy is widely used in advanced aero-engine blades.

Before 2007, the world’s major sources of tantalum were Australia and Brazil. In 2000, the world’s major producing countries produced approximately 1,100 tons of tantalum concentrate, of which Australia accounted for 45%, mainly at Greenbush and Wodgina mines, while Brazil accounted for 17%, Rwanda 12%, and Congo 9%. At the time, Congo was in the midst of a second civil war, and large numbers of rebels smuggled Congolese tantalum mines into Rwanda for export under the Rwandan name.

In 2003, the Democratic Republic of Congo (DRC) signed a peace agreement with rebels in the east that ended a second civil war. But the rebels in eastern DRC have not really laid down their arms, and are no longer engaged in open, large-scale fighting with government forces. The rebels continue to splinter and regroup, with new rebels popping up every now and then. Congo and the surrounding great lakes countries are backward industrially, all guns and ammunition are imported, and any imports must be accompanied by foreign currency. Both the rebels and the great lakes countries are eyeing tantalum as a new source of revenue.

Tantalum has supported the fighting in eastern Congo. Subsequently, the world’s major tantalum deposits have undergone a stunning reversal. Cheap Labour in eastern Congo, using baskets and hammer shovels, has been digging holes in droves, defeating Australian tantalum miners armed with big mining machines. Australia’s tantalum mines, unable to compete with a shoveled army of poor Congolese, went bust and quit altogether.

In 2007, Rwanda and the Democratic Republic of Congo had the world’s largest and second-largest share of tantalum mines. On January 9, 2007, Apple’s Steve Jobs launched the first iPhone. In 2014, most of the world’s tantalum mines were exported by Rwanda and DRC, including 600 tons from Rwanda and 200 tons from DRC, accounting for more than 70% of the world’s tantalum output.

In 2010, the U.S. implemented the Dodd-Frank Wall Street reform and consumer protection act, which requires U.S. companies that purchase tantalum products and other materials to investigate their supply chains and determine that the materials are not sourced from conflict zones in the democratic republic of Congo. The United States describes minerals from the eastern DRC region that have been repeatedly contested by rebels and government forces as conflict minerals.

Rwanda, Tanzania, and Bolivia are investing in the construction of tantalum and niobium smelting plants due to the implementation of the Dodd-Frank Act in the US and the Conflict Minerals Regulation in the EU. It is expected that the supply of tantalum raw materials in the world, especially in Africa, will become more and tighter in the future.

Stanford Advanced Materials (SAM) is a trusted supplier of high-quality capacitor grade tantalum powdercapacitor grade tantalum wire, and a wide variety of tantalum products. Please visit https://www.samaterials.com/ for more information.

Why is Tantalum Widely Used in Electronic Industry?

Since the 1950s, TZM alloy (Mo-0.5 Ti-0.1 Zr-0.02 C) has been developed to meet the needs of the nuclear power system, aviation, and aerospace industry. It is the most widely used molybdenum alloy in the industry and the earliest refractory alloy used as a high-temperature structural material. However, the low-temperature brittleness of molybdenum alloy greatly limits its application.

tantalum metal

Tantalum metal has a lower plastic brittle transition temperature (196 ℃) and has better performance on the workability, weldability, ductility, and oxidation resistance at room temperature than that of molybdenum and tungsten in refractory metals. In addition, tantalum and its alloys with high melting point (2996 ℃), corrosion resistance, excellent high-temperature strength, and free of radioactive, etc, are widely used in the electronics industry, chemical industry, aerospace, weapon system, and the medical field, etc.

Tantalum metal
Tantalum metal

The applications of tantalum materials in the electronics industry mainly include tantalum capacitors, integrated circuits, electron tubes, memory devices, and passive devices.

Tantalum capacitor

Tantalum has the metal property of a valve, and the compact oxide film formed on its surface has unidirectional conductivity, which is suitable for making capacitors. Tantalum capacitors have a large capacity and small volume, and their capacitance is three times that of aluminum capacitors, but their volume is much smaller than that of aluminum capacitors. The working temperature of the tantalum capacitor ranges from -80 to 200 ℃, which can meet the demand of different temperatures. Besides, tantalum capacitors have strong stability and heat resistance performance and become a kind of material with high reliability in the electronics industry, which is widely used in military and high-tech fields that need to ensure high reliability.

Tantalum capacitor
Tantalum capacitor

Integrated circuit

Tantalum material is introduced into the semiconductor industry as a barrier layer thin-film material used to prevent the diffusion of copper atoms to silicon wafers. There are no compounds are formed between copper and tantalum, and copper and nitride, so tantalum and tantalum base membranes are used as barrier layers to prevent copper diffusion, and the typical thickness of the barrier layer is 0.005 ~ 0.01μm. In order to prevent the diffusion of copper atoms into the silicon matrix, tantalum nitride, tantalum silicide, tantalum carbide, and silicon nitride are used as barrier layers.

Memory device

Tantalum oxide matrix resistive memory (RRAM) has the advantages of simple structure, fast read and write speed, strong instability, and compatibility with the CMOS process. The permittivity of tantalum oxide material is very high, which is about 25. Moreover, there are only two stable phases between ta-O, Ta2O5 and TaO2, which have high oxygen capacity ratio under the high temperature of 1000 ℃.

Passive device

When tantalum nitride film is exposed to air, the surface will naturally form a layer of the oxide layer to protect the film from erosion in the presence of water vapor and voltage. The chip resistance of tantalum nitride will not cause catastrophic failure of the device due to the poor integrity of the package or protective coating.

RRAM
RRAM

When researchers discovered tantalum’s high-temperature resistance, good ductility, and corrosion resistance, the research on tantalum metal began. At present, the application field of capacitor grade tantalum wire is further expanded with the rapid development of the electronic market. However, the development of tantalum capacitors is greatly restricted due to various reasons, such as the increase in production cost, the further consumption of resources, and the intensification of the competition between ceramic and other capacitors.

In recent years, the market consumption of capacitor tantalum wire has been maintained at about 160 tons per year. With the development and use of military capacitors and the miniaturization and chip type of capacitors, the capacitor-grade tantalum wire gradually develops toward the thick and thin poles.

Please visit http://www.samaterials.com for more information.